Accurate Probability Calibration for Multiple Classifiers

نویسندگان

  • Leon Wenliang Zhong
  • James T. Kwok
چکیده

In classification problems, isotonic regression has been commonly used to map the prediction scores to posterior class probabilities. However, isotonic regression may suffer from overfitting, and the learned mapping is often discontinuous. Besides, current efforts mainly focus on the calibration of a single classifier. As different classifiers have different strengths, a combination of them can lead to better performance. In this paper, we propose a novel probability calibration approach for such an ensemble of classifiers. We first construct isotonic constraints on the desired probabilities based on soft voting of the classifiers. Manifold information is also incorporated to combat overfitting and ensure function smoothness. Computationally, the extended isotonic regression model can be learned efficiently by a novel optimization algorithm based on the alternating direction method of multipliers (ADMM). Experiments on a number of real-world data sets demonstrate that the proposed approach consistently outperforms independent classifiers and other combinations of the classifiers’ probabilities in terms of the Brier score and AUC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability Calibration Trees

Obtaining accurate and well calibrated probability estimates from classifiers is useful in many applications, for example, when minimising the expected cost of classifications. Existing methods of calibrating probability estimates are applied globally, ignoring the potential for improvements by applying a more fine-grained model. We propose probability calibration trees, a modification of logis...

متن کامل

Evidential calibration of binary SVM classifiers

In machine learning problems, the availability of several classifiers trained on different data or features makes the combination of pattern classifiers of great interest. To combine distinct sources of information, it is necessary to represent the outputs of classifiers in a common space via a transformation called calibration. The most classical way is to use class membership probabilities. H...

متن کامل

Hierarchical multi-label prediction of gene function

MOTIVATION Assigning functions for unknown genes based on diverse large-scale data is a key task in functional genomics. Previous work on gene function prediction has addressed this problem using independent classifiers for each function. However, such an approach ignores the structure of functional class taxonomies, such as the Gene Ontology (GO). Over a hierarchy of functional classes, a grou...

متن کامل

Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Calibration

There are several reasons to evaluate a multi-class classifier on other measures than just error rate. Perhaps most importantly, there can be uncertainty about the exact context of classifier deployment, requiring the classifier to perform well with respect to a variety of contexts. This is commonly achieved by creating a scoring classifier which outputs posterior class probability estimates. P...

متن کامل

Properties and Benefits of Calibrated Classifiers

A calibrated classifier provides reliable estimates of the true probability that each test sample is a member of the class of interest. This is crucial in decision making tasks. Procedures for calibration have already been studied in weather forecasting, game theory, and more recently in machine learning, with the latter showing empirically that calibration of classifiers helps not only in deci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013